TorchLiter

module torchliter.engine.base

Global Variables


class EngineBase

Base class of Engine classes.

Attributes ———- epoch : int Current epoch iteration : int Current interation fractional_epoch: float fractional_epoch = epoch + iteration/epoch_length fractional_iteration : float fractional_iteration = iteration/epoch_length epoch_length : Optional[int] Total number of iterations in an epoch absolute_iterations : int absolute_iterations = epoch_length * epoch + iteration _registry : Tuple[Dict[str, Any]] Registry of engine components.

method EngineBase.__init__

__init__()

property EngineBase.absolute_iterations


property EngineBase.fractional_epoch


property EngineBase.fractional_iteration


property EngineBase.is_eval_stub


property EngineBase.is_lambda_stub


property EngineBase.is_train_stub


property EngineBase.training


method EngineBase.after_iteration

after_iteration(**kwargs)

method EngineBase.before_iteration

before_iteration(**kwargs)

method EngineBase.eval

eval()

method EngineBase.execute

execute(**kwargs: Any)  None

Executes stubs in queue.

Parameters ———- **kwargs : Any

Returns ——- None

Raises —— AttributeError No action attached to current stub.


method EngineBase.load_state_dict

load_state_dict(state_dict: Dict[str, Dict[str, Any]])  None

Load state into engine.

Parameters ———- state_dict : Dict[str, Dict[str, Any]] Engine state dict.

Returns ——- None


method EngineBase.per_batch

per_batch(batch: Union[Tuple[Any], Dict[str, Any]], **kwargs: Any)

method EngineBase.per_epoch

per_epoch(**kwargs)

Train, eval model or performe a lambda op by one epoch.

The stub must have dataloader.


method EngineBase.queue

queue(stubs: List[torchliter.stub.StubBase])  None

Adds stubs to queue.

Parameters ———- stubs : List[StubBase] A list of stubs.

Returns ——- None


method EngineBase.reset_engine

reset_engine()  None

Reset engine state.

epoch -> 0 iteration -> 0 stubs -> []


method EngineBase.reset_queue

reset_queue()  None

Resets stubs queue to empty.


method EngineBase.state_dict

state_dict()  Dict[str, Dict[str, Any]]

Generate current state of the engine as Dict.

Returns ——- Dict[str, Dict[str, Any]] Dict of component state dicts.


method EngineBase.train

train()

method EngineBase.when_epoch_finishes

when_epoch_finishes(**kwargs)

method EngineBase.when_epoch_starts

when_epoch_starts(**kwargs)